Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Vet Clin Pathol ; 52(4): 716-721, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012962

ABSTRACT

B-cell leukemia is a rare form of hematologic neoplasia in sheep, especially in adult animals. We present a case report of a 5-year-old WhiteFace Sheep wether with suspected acute lymphoblastic leukemia. The patient, a second-generation relative of ewes experimentally inoculated with atypical scrapie, exhibited acute lethargy and loss of appetite. Laboratory investigation revealed marked leukocytosis, lymphocytosis, and abnormal serum chemistry panel results. Microscopic examination of blood and bone marrow smears exhibited a high percentage of large neoplastic cells with lymphoid characteristics. Histopathologic analysis of the spleen, liver, lungs, and other organs confirmed the presence of widespread tissue infiltration by neoplastic cells. Immunohistochemical labeling demonstrated strong intracytoplasmic labeling for CD20, consistent with B-cell neoplasia. Flow cytometric analysis confirmed the B-cell lineage of the neoplastic cells. Screening for bovine leukemia virus, which can experimentally cause leukemia in sheep, yielded a negative result. In this case, the diagnosis of B-cell leukemia was supported by a comprehensive panel of diagnostic evaluations, including cytology, histopathology, immunohistochemistry, and immunophenotyping. This case report highlights the significance of accurate diagnosis and classification of hematologic neoplasia in sheep, emphasizing the need for immunophenotyping to aid in the diagnosis of B-cell leukemia. It also emphasizes the importance of considering spontaneous leukemia as a differential diagnosis in sheep with lymphoid neoplasia, especially in the absence of circulating infectious diseases.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphocytosis , Lymphoma , Sheep Diseases , Male , Animals , Sheep , Female , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/veterinary , Lymphoma/veterinary , Spleen/pathology , Lymphocytosis/pathology , Lymphocytosis/veterinary , Immunophenotyping/veterinary , Flow Cytometry/veterinary , Sheep Diseases/diagnosis
2.
Can Vet J ; 64(9): 828-832, 2023 09.
Article in English | MEDLINE | ID: mdl-37663018

ABSTRACT

An 8-year-old Saanen goat doe was seen for inappetence, tachycardia, and intermittent bluish-grey discoloration of the oral mucous membranes. On physical examination, the goat was mildly tachypneic and tachycardic, with reduced sounds auscultated on the left side of the thorax. Euthanasia was elected. Necropsy revealed an infiltrative, multinodular mass within the left thoracic cavity and innumerable small, tan nodules disseminated across the pleura of the lungs, thoracic walls, and diaphragm. Upon histologic examination, the mass was composed of highly pleomorphic, fusiform to polygonal cells. Neoplastic cells exhibited positive immunoreactivity for both cytokeratin and vimentin, consistent with a diagnosis of biphasic pleural mesothelioma. Key clinical message: Mesothelioma has rarely been described in the goat but should be considered as a differential diagnosis for thoracic masses in small ruminants, along with thymoma; metastatic neoplasia; carcinomatosis; and granulomatous lesions caused by parasites, bacteria, and fungi.


Mésothéliome pleural biphasique chez une chèvre. Une chèvre Saanen âgée de 8 ans a été vue pour de l'inappétence, une tachycardie et une décoloration gris bleuâtre intermittente des muqueuses buccales. À l'examen physique, la chèvre était légèrement tachypnéique et tachycardique, avec des sons réduits auscultés du côté gauche du thorax. Il a été décidé d'euthanasier l'animal. L'autopsie a révélé une masse multinodulaire infiltrante dans la cavité thoracique gauche et d'innombrables petits nodules brun clair disséminés à travers la plèvre pulmonaire, les parois thoraciques et le diaphragme. À l'examen histologique, la masse était composée de cellules hautement pléomorphes, fusiformes à polygonales. Les cellules néoplasiques ont présenté une immunoréactivité positive pour la cytokératine et la vimentine, compatible avec un diagnostic de mésothéliome pleural biphasique.Message clinique clé:Le mésothéliome a rarement été décrit chez la chèvre mais doit être considéré comme un diagnostic différentiel des masses thoraciques chez les petits ruminants, avec le thymome, la néoplasie métastatique, la carcinomatose et les lésions granulomateuses causées par des parasites, des bactéries et des champignons.(Traduit par Dr Serge Messier).


Subject(s)
Carcinoma , Goat Diseases , Mesothelioma , Animals , Goats , Euthanasia, Animal , Mesothelioma/diagnosis , Mesothelioma/veterinary , Autopsy/veterinary , Carcinoma/veterinary , Goat Diseases/diagnosis
3.
Pathogens ; 12(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37111445

ABSTRACT

Theileria orientalis Ikeda has caused an epidemic of bovine anemia and abortion across several U.S. states. This apicomplexan hemoparasite is transmitted by Haemaphysalis longicornis ticks; however, it is unknown if other North American ticks are competent vectors. Since the disease movement is largely determined by the host tick range(s), the prediction of the T. orientalis spread among U.S. cattle populations requires determination of additional competent tick vectors. Although Rhipicephalus microplus has mostly been eradicated from the U.S., outbreaks in populations occur frequently, and the U.S. remains at risk for reintroduction. Since R. microplus is a vector of Theileria equi and T. orientalis DNA has been detected in R. microplus, the goal of this study was to determine whether R. microplus is a competent vector of T. orientalis. Larval R. microplus were applied to a splenectomized, T. orientalis Ikeda-infected calf for parasite acquisition, removed as molted adults, and applied to two T. orientalis naïve, splenectomized calves for transmission. After 60 days, the naïve calves remained negative for T. orientalis by PCR and cytology. Additionally, T. orientalis was not detected in the salivary glands or larval progeny of acquisition-fed adults. These data suggest that R. microplus is not a competent vector of the U.S. T. orientalis Ikeda isolate.

4.
Pathogens ; 12(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986375

ABSTRACT

Equine theileriosis, caused by Theileria haneyi and Theileria equi, leads to anemia, exercise intolerance, and occasionally, death. Theileriosis-free countries prohibit the importation of infected horses, resulting in significant costs for the equine industry. Imidocarb dipropionate is the only treatment for T. equi in the United States, but lacks efficacy against T. haneyi. The goal of this study was to assess the in vivo efficacy of tulathromycin and diclazuril against T. haneyi. Fourteen T. haneyi-infected horses were utilized. Six were treated with eight weekly 2.5 mg/kg doses of tulathromycin. Three were treated daily for eight weeks with 2.5 mg/kg diclazuril. Three were pre-treated with 0.5 mg/kg diclazuril daily for one month to determine whether low-dose diclazuril prevents infection. Following infection, the dose was increased to 2.5 mg/kg for eight weeks. Two infected horses remained untreated as controls. The horses were assessed via nested PCR, physical exams, complete blood counts, serum chemistry panels, and cytology. Tulathromycin and diclazuril failed to clear T. haneyi and the treated and control groups exhibited similar parasitemia and packed cell volume declines. To obtain additional safety data on tulathromycin use in adult horses, necropsy and histopathology were performed on tulathromycin-treated horses. No significant lesions were detected.

5.
Cytometry A ; 103(1): 12-15, 2023 01.
Article in English | MEDLINE | ID: mdl-36053881

ABSTRACT

This 8-color panel has been optimized to distinguish between functionally distinct subsets of cattle B cells in both fresh and cryopreserved peripheral blood mononuclear cells (PBMCs). Existing characterized antibodies against cell surface molecules (immunoglobulin light chain (S-Ig[L]), CD20, CD21, CD40, CD71, and CD138) enabled the discrimination of 24 unique populations within the B-cell population. This allows the identification of five putative functionally distinct B-cell subsets critical to infection and vaccination responses: (1) naïve B cells (BNaïve ), (2) regulatory B cells (BReg ), (3) memory B cells (BMem ), (4) plasmablasts (PB), and (5) plasma cells (PC). Although CD3 and CD8α can be included as an additional dump channel, it does not significantly improve the panel's ability to separate "classical" B cells. This panel will promote better characterization and tracking of B-cell responses in cattle as well as other bovid species as the reagents are likely to cross react.


Subject(s)
B-Lymphocytes, Regulatory , Cattle , Animals , CD40 Antigens , Flow Cytometry
6.
Vet Immunol Immunopathol ; 250: 110456, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35728348

ABSTRACT

Opportunities to include Cetancodontamorpha in the study of the evolution of the immune system in the clades of Artiodactylamorpha, Ruminantiamorpha, Suinamorpha, and Camelidamorpha have increased with the use of the bottlenose dolphin, Tursiops truncatus, as a sentinel species to study the effects of environmental pollutants on the health of marine mammals. Efforts are currently underway to increase the number reagents needed for detailed studies. Thus far, screening of monoclonal antibodies (mAbs) made to leukocyte differentiation molecules (LDM) and the major histocompatibility (MHC) class I and class II molecules in Ruminantiamorpha have yielded some mAbs that recognize conserved epitopes expressed on orthologues in the bottlenose dolphin. More direct approaches are in progress to identify additional mAbs to bottlenose LDM and cytokines. As reported here, both direct and indirect approaches were used to identify mAbs specific for cytokines useful in monitoring the effects of environmental pollutants on the immune system. Immunization of mice with expressed bottlenose dolphin cytokines yielded mAbs specific for IFN-γ, TNF-α, IL-6, IL-8, IL-10, and IL-17A. Screening of previously developed mAbs used in livestock immunology research revealed mAbs developed against ovine IFN-γ and bovine IL-17 and IL-1ß recognize conserved epitopes in bottlenose dolphin orthologues. The mAbs identified in the present study expand the reagents available to study the function of the immune system in bottlenose dolphins and cattle.


Subject(s)
Bottle-Nosed Dolphin , Environmental Pollutants , Animals , Antibodies, Monoclonal , Cattle , Cytokines , Epitopes , Interferon-gamma , Interleukin-10 , Interleukin-17 , Interleukin-6 , Interleukin-8 , Mice , Sheep , Sheep, Domestic , Tumor Necrosis Factor-alpha
7.
Front Vet Sci ; 9: 878347, 2022.
Article in English | MEDLINE | ID: mdl-35591875

ABSTRACT

Progress in the study of the immune response to pathogens and candidate vaccines has been impeded by limitations in the methods to study the functional activity of T-cell subsets proliferating in response to antigens processed and presented by antigen presenting cells (APC). As described in this review, during our studies of the bovine immune response to a candidate peptide-based vaccine and candidate rel deletion mutants in Mycobacterium avium paratuberculosis (Map) and Mycbacterium bovis (BCG), we developed methods to study the primary and recall CD4 and CD8 T-cell responses using an ex vivo platform. An assay was developed to study intracellular killing of bacteria mediated by CD8 T cells using quantitative PCR to distinguish live bacteria from dead bacteria in a mixed population of live and dead bacteria. Through use of these assays, we were able to demonstrate vaccination with live rel Map and BCG deletion mutants and a Map peptide-based vaccine elicit development of CD8 cytotoxic T cells with the ability to kill intracellular bacteria using the perforin-granzyme B pathway. We also demonstrated tri-directional signaling between CD4 and CD8 T cells and antigen-primed APC is essential for eliciting CD8 cytotoxic T cells. Herein, we describe development of the assays and review progress made through their use in the study of the immune response to mycobacterial pathogens and candidate vaccines. The methods obviate some of the major difficulties encountered in characterizing the cell-mediated immune response to pathogens and development of attenuated and peptide-based vaccines.

8.
Int J Parasitol ; 52(6): 385-397, 2022 05.
Article in English | MEDLINE | ID: mdl-35318949

ABSTRACT

Theileria equi is an obligate intracellular protozoan parasite that causes severe hemolytic anaemia in most equid species. Similar to other apicomplexan parasites, T. equi contains rhoptries whose contents have been implicated in host cell invasion and formation of the parasitophorous vacuole that is crucial for survival of the species within cells. Despite their importance, the composition of T. equi rhoptries and their role(s) in host cell invasion remain unexplored. To gain insight into these issues, we evaluated the expression, immunogenicity, and functional roles of two T. equi rhoptry-associated proteins abbreviated as RAP-1a and RAP-1b. The full-length RAP-1a protein was expressed to perform the analysis but our efforts to express the full-length RAP-1b protein failed due to an unknown reason. We therefore generated synthetic immunogenic peptides that map onto the N- and C-termini of the RAP-1b protein as an alternative approach. Our findings show that both proteins are expressed in the extracellular and intra-erythrocytic merozoite stages of T. equi. Serological analyses show that T. equi-infected horses mount antibody responses that recognise both proteins and correlate with a decrease in T. equi load in both acutely and persistently infected horses. In vitro neutralisation studies show that the T. equi RAP-1a protein contains neutralisation-sensitive epitopes as antibodies developed against the protein significantly inhibited the parasites from invading equine erythrocytes. Conversely, antibodies developed against the RAP-1b synthetic peptides did not neutralise parasite invasion, showing that the protein regions on which the peptides were based are not required for T. equi invasion. Overall, the data shows that T. equi rhoptries and their contents are involved in invasion of host cells and supports T. equi RAP-1 proteins as candidates for developing novel serodiagnosis tools and vaccines.


Subject(s)
Horse Diseases , Theileria , Theileriasis , Vaccines , Animals , Cattle , Epitopes , Horse Diseases/diagnosis , Horse Diseases/prevention & control , Horses , Merozoites , Theileriasis/prevention & control
9.
Pathogens ; 11(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35215197

ABSTRACT

The global importance of the hemoparasite Theileria haneyi to equine health was recently shown by its resistance to imidocarb dipropionate (ID) and its interference with T. equi clearance by ID in some co-infected horses. Genetic characterization of T. haneyi revealed marked genomic reduction compared to T. equi, and initial experiments demonstrated reduced clinical severity in spleen-intact horses. Furthermore, in early experiments, splenectomized horses survived T. haneyi infection and progressed to an asymptomatic carrier state, in stark contrast to the high fatality rate of T. equi in splenectomized horses. Thus, we hypothesized that T. haneyi is less virulent than T. equi. To objectively assess virulence, clinical data from nine splenectomized, T. haneyi-infected horses were evaluated and compared to published data on T. equi-infected, splenectomized horses. Seven of eight splenectomized, T. haneyi-infected horses survived. Further, in six horses co-infected with T. equi and T. haneyi, only horses cleared of T. equi by ID survived splenectomy and became asymptomatic carriers. The reduced virulence of T. haneyi in splenectomized horses instructs why T. haneyi was, until recently, undetected. This naturally occurring comparative reduction in virulence in a natural host provides a foundation for defining virulence mechanisms of theileriosis and Apicomplexa in general.

10.
Pathogens ; 10(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959553

ABSTRACT

Arthropod-borne apicomplexan pathogens remain a great concern and challenge for disease control in animals and humans. In order to prevent Babesia infection, the discovery of antigens that elicit protective immunity is essential to establish approaches to stop disease dissemination. In this study, we determined that poly-N-acetylglucosamine (PNAG) is conserved among tick-borne pathogens including B. bovis, B. bigemina, B. divergens, B. microti, and Babesia WA1. Calves immunized with synthetic ß-(1→6)-linked glucosamine oligosaccharides conjugated to tetanus toxoid (5GlcNH2-TT) developed antibodies with in vitro opsonophagocytic activity against Staphylococcus aureus. Sera from immunized calves reacted to B. bovis. These results suggest strong immune responses against PNAG. However, 5GlcNH2-TT-immunized bovines challenged with B. bovis developed acute babesiosis with the cytoadhesion of infected erythrocytes to brain capillary vessels. While this antigen elicited antibodies that did not prevent disease, we are continuing to explore other antigens that may mitigate these vector-borne diseases for the cattle industry.

11.
Parasit Vectors ; 14(1): 616, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952641

ABSTRACT

BACKGROUND: Vector-borne diseases pose an increasing threat to global food security. Vaccines, diagnostic tests, and therapeutics are urgently needed for tick-borne diseases that affect livestock. However, the inability to obtain significant quantities of pathogen stages derived from ticks has hindered research. In vitro methods to isolate pathogens from infected tick vectors are paramount to advance transcriptomic, proteomic, and biochemical characterizations of tick-borne pathogens. METHODS: Nymphs of Rhipicephalus appendiculatus were infected with Theileria parva by feeding on a calf during an acute infection. Isolation of sporozoites was accomplished by feeding infected adult ticks on an in vitro tick feeding system. Sporozoite viability was tested using in vitro bovine lymphocytes. RESULTS: We isolated infectious T. parva sporozoites secreted into an in vitro tick feeding system. Infected adult R. appendiculatus ticks attached to and successfully fed on silicone membranes in the in vitro tick feeding system. Bovine blood in the receptacle was replaced with cell-free medium and the ticks were allowed to feed for 3 h to collect secreted T. parva sporozoites. Secreted sporozoites infected in vitro bovine lymphocytes, demonstrating that isolated sporozoites remained viable and infectious. CONCLUSIONS: This work is the first to report the isolation of mature infectious T. parva sporozoites using an in vitro tick feeding system, which represents a significant step towards the development of a more efficient control strategy for T. parva. Isolation of infectious tick-stage parasites will facilitate the examination of the vector-pathogen interface, thereby accelerating the development of next-generation vaccines and treatment interventions for tick-borne pathogens.


Subject(s)
Rhipicephalus/parasitology , Theileria parva/physiology , Animals , Host-Parasite Interactions , Sporozoites
12.
Vaccines (Basel) ; 9(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34696193

ABSTRACT

Lack of understanding of the immune response to mycobacterial pathogens has impeded progress in development of vaccines. Infection leads to development of an immune response that controls infection but is unable to eliminate the pathogen, resulting in a persistent infection. Although this puzzle remains to be solved, progress has been made using cattle as a model species to study the immune response to a prototypic mycobacterium, Mycobacterium a. paratuberculosis (Map). As chronicled in the review, incremental advances in characterizing the immune response to mycobacteria during the last 30 years with increases in information on the evolution of mycobacteria and relA, a gene regulating the stringent response, have brought us closer to an answer. We provide a brief overview of how mycobacterial pathogens were introduced into cattle during the transition of humankind to nomadic pastoralists who domesticated animals for food and farming. We summarize what is known about speciation of mycobacteria since the discovery of Mybacterium tuberculsis Mtb, M. bovis Mbv, and Map as zoonotic pathogens and discuss the challenges inherent in the development of vaccines to mycobacteria. We then describe how cattle were used to characterize the immune response to a prototypic mycobacterial pathogen and development of novel candidate vaccines.

13.
Vet Sci ; 8(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207122

ABSTRACT

The apicomplexan hemoparasite, Theileria parva, causes East Coast fever (ECF), a frequently fatal disease of African cattle. Vaccine development has been impeded by incomplete understanding of protective immunity following natural exposure or the infection and treatment method (ITM) of immunization. This is attributable to a paucity of methods to characterize the memory T-cell repertoire following infection. To overcome this impediment, assays developed to study the immune response to other intracellular pathogens were adapted for use in studies with T. parva to enable definition of the phenotype and function of effector T cells in T. parva-immune cattle, facilitating vaccine development. As reported herein, stimulation of peripheral blood mononuclear cells (PBMC) from ITM-immunized steers with irradiated, autologous, T. parva-infected cell lines elicited a proliferative recall response comprised of CD45R0+/CCR7- CD4+ and CD8+ T cells. Subsequent co-incubation of stimulated cultures with infected cells demonstrated the presence of cytotoxic T cells (CTLs) with the ability to kill infected cells. Comparison of CTL activity in cultures depleted of CD4+ or CD8+ T cells demonstrated CTL activity was primarily attributed to CD8+ T cells. Importantly, stimulation of PBMC from vaccinated steers always elicited proliferation of CD4+ and CD8+ T cells. This was the first important observation obtained from the use of the assay described herein.

14.
Sci Rep ; 11(1): 9301, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927329

ABSTRACT

Theileria equi is a widely distributed apicomplexan parasite that causes severe hemolytic anemia in equid species. There is currently no effective vaccine for control of the parasite and understanding the mechanism that T. equi utilizes to invade host cells may be crucial for vaccine development. Unlike most apicomplexan species studied to date, the role of micronemes in T. equi invasion of host cells is unknown. We therefore assessed the role of the T. equi claudin-like apicomplexan microneme protein (CLAMP) in the invasion of equine erythrocytes as a first step towards understanding the role of this organelle in the parasite. Our findings show that CLAMP is expressed in the merozoite and intra-erythrocytic developmental stages of T. equi and in vitro neutralization experiments suggest that the protein is involved in erythrocyte invasion. Proteomic analyses indicate that CLAMP interacts with the equine erythrocyte α-and ß- spectrin chains in the initial stages of T. equi invasion and maintains these interactions while also associating with the anion-exchange protein, tropomyosin 3, band 4.1 and cytoplasmic actin 1 after invasion. Additionally, serological analyses show that T. equi-infected horses mount robust antibody responses against CLAMP indicating that the protein is immunogenic and therefore represents a potential vaccine candidate.


Subject(s)
Erythrocyte Membrane/metabolism , Horse Diseases/parasitology , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Theileria/pathogenicity , Theileriasis/parasitology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Blood Proteins/metabolism , Claudins , Epitopes, B-Lymphocyte/immunology , Erythrocytes/parasitology , Horse Diseases/immunology , Horses/blood , Horses/parasitology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Merozoites/genetics , Merozoites/metabolism , Neutralization Tests , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Theileria/growth & development , Theileria/immunology , Theileria/metabolism , Theileriasis/immunology
15.
Pathogens ; 10(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673478

ABSTRACT

The apicomplexan parasite Theileria haneyi is one of two known causative agents of equine theileriosis. It causes milder clinical disease than its more virulent counterpart, Theileria equi, in experimentally infected horses, and can superinfect T. equi-positive horses. The current equi merozoite antigen 1 (EMA1)-based competitive enzyme-linked immunosorbent assay (ELISA)used in the U.S. to detect equine theileriosis detects T. equi but not T. haneyi, and the complexity of molecular assays precludes widespread use for epidemiologic studies. In order to facilitate urgently needed studies on the prevalence of T. haneyi, the goal of this study was to develop a sensitive and specific serologic assay for the diagnosis of T. haneyi based on the equi merozoite antigen 11 (ThEMA11). To achieve this objective, ThEMA11 was recombinantly expressed in eukaryotic cells and its antigenicity assessed using sera from T. haneyi-experimentally infected horses. Confirmation of sera reactivity enabled design and optimization of an indirect ELISA. Specificity of the ELISA for T. haneyi was assessed using a cohort of sera from horses experimentally infected and confirmed PCR-positive for either T. equi or T. haneyi. Data from field samples further demonstrate that the ThEMA11 ELISA is capable of identifying T. haneyi antibodies in horses from multiple continents around the world.

16.
Parasit Vectors ; 14(1): 157, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726815

ABSTRACT

BACKGROUND: Theileria orientalis is a tick-borne hemoparasite that causes anemia, ill thrift, and death in cattle globally. The Ikeda strain of T. orientalis is more virulent than other strains, leading to severe clinical signs and death of up to 5% of affected animals. Within the Asia-Pacific region, where it affects 25% of Australian cattle, T. orientalis Ikeda has a significant economic impact on the cattle industry. In 2017, T. orientalis Ikeda was detected in a cattle herd in Albermarle County, Virginia, United States. Months earlier, the U.S. was alerted to the invasion of the Asian longhorned tick, Haemaphysalis longicornis, throughout the eastern U.S. Abundant H. longicornis ticks were identified on cattle in the T. orientalis-affected herd in VA, and a subset of ticks from the environment were PCR-positive for T. orientalis Ikeda. A strain of T. orientalis from a previous U.S. outbreak was not transmissible by H. longicornis; however, H. longicornis is the primary tick vector of T. orientalis Ikeda in other regions of the world. Thus, the objective of this study was to determine whether invasive H. longicornis ticks in the U.S. are competent vectors of T. orientalis Ikeda. METHODS: Nymphal H. longicornis ticks were fed on a splenectomized calf infected with the VA-U.S.-T. orientalis Ikeda strain. After molting, a subset of adult ticks from this cohort were dissected, and salivary glands assayed for T. orientalis Ikeda via qPCR. The remaining adult ticks from the group were allowed to feed on three calves. Calves were subsequently monitored for T. orientalis Ikeda infection via blood smear cytology and PCR. RESULTS: After acquisition feeding on a VA-U.S.-T. orientalis Ikeda-infected calf as nymphs, a subset of molted adult tick salivary glands tested positive by qPCR for T. orientalis Ikeda. Adult ticks from the same cohort successfully transmitted T. orientalis Ikeda to 3/3 naïve calves, each of which developed parasitemia reaching 0.4-0.9%. CONCLUSIONS: Our findings demonstrate that U.S. H. longicornis ticks are competent vectors of the VA-U.S.-T. orientalis Ikeda strain. This data provides important information for the U.S. cattle industry regarding the potential spread of this parasite and the necessity of enhanced surveillance and control measures.


Subject(s)
Cattle Diseases/parasitology , Cattle Diseases/transmission , Disease Outbreaks/veterinary , Genotype , Theileria/genetics , Theileriasis/transmission , Ticks/parasitology , Animals , Asia , Cattle , Male , Parasitemia/epidemiology , Theileria/isolation & purification , Theileriasis/parasitology , United States/epidemiology
17.
Pathogens ; 9(11)2020 Nov 08.
Article in English | MEDLINE | ID: mdl-33171698

ABSTRACT

Equine piroplasmosis (EP), caused by the hemoparasites Theileria equi, Theileria haneyi, and Babesia caballi, is an important tick-borne disease of equines that is prevalent in most parts of the world. Infection may affect animal welfare and has economic impacts related to limitations in horse transport between endemic and non-endemic regions, reduced performance of sport horses and treatment costs. Here, we analyzed the epidemiological, serological, and molecular diagnostic data published in the last 20 years, and all DNA sequences submitted to GenBank database, to describe the current global prevalence of these parasites. We demonstrate that EP is endemic in most parts of the world, and that it is spreading into more temperate climates. We emphasize the importance of using DNA sequencing and genotyping to monitor the spread of parasites, and point to the necessity of further studies to improve genotypic characterization of newly recognized parasite species and strains, and their linkage to virulence.

18.
Parasit Vectors ; 13(1): 261, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32430015

ABSTRACT

Equine theileriosis, a tick-transmitted disease caused by the hemoprotozoan parasites Theileria equi and Theileria haneyi, affects equids throughout tropical and subtropical regions of the world. It is a significant regulatory concern in non-endemic countries, where testing for equine theileriosis is required prior to horse import to prevent parasite entry. Within endemic areas, infection causes significant morbidity and mortality, leading to economic losses. No vaccine for equine theileriosis is available, and current drug treatment protocols are inconsistent and associated with significant side effects. Recent work has revealed substantial genetic variability among equine theileriosis organisms, and analysis of ribosomal DNA from affected animals around the world indicates that the organisms can be grouped into five distinct clades. As these diverse parasites are capable of infecting a wide range of both tick and mammalian hosts, movement of different equine Theileria species between endemic countries, and eventually into non-endemic countries, is a significant concern. Furthermore, the substantial genetic variability of these organisms will likely render currently utilized importation diagnostic tests unable to detect all equine Theileria spp. To this end, more complete characterization of these diverse parasites is critical to the continued global control of equine theileriosis. This review discusses current knowledge of equine Theileria spp. in this context, and highlights new opportunities and challenges for workers in this field.


Subject(s)
Horse Diseases/parasitology , Host Specificity , Mammals/parasitology , RNA, Ribosomal, 18S/genetics , Theileria/classification , Animals , Genetic Variation , Horses , Phylogeny , Theileriasis/parasitology
19.
BMC Genomics ; 21(1): 279, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32245418

ABSTRACT

BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.


Subject(s)
Molecular Sequence Annotation/methods , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Theileria parva/genetics , Alternative Splicing , Animals , Gene Regulatory Networks , Genome, Protozoan , Glycosylation , Livestock/parasitology , Sequence Analysis, RNA , Theileria parva/metabolism
20.
Transbound Emerg Dis ; 67 Suppl 1: 56-67, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32174044

ABSTRACT

The infection and treatment (ITM) live vaccination method for control of Theileria parva infection in cattle is increasingly being adopted, particularly in Maasai pastoralist systems. Several studies indicate positive impacts on human livelihoods. Importantly, the first detailed protocol for live vaccine production at scale has recently been published. However, quality control and delivery issues constrain vaccination sustainability and deployment. There is evidence that the distribution of T. parva is spreading from endemic areas in East Africa, North into Southern Sudan and West into Cameroon, probably as a result of anthropogenic movement of cattle. It has also recently been demonstrated that in Kenya, T. parva derived from cape buffalo can 'breakthrough' the immunity induced by ITM. However, in Tanzania, breakthrough has not been reported in areas where cattle co-graze with buffalo. It has been confirmed that buffalo in northern Uganda national parks are not infected with T. parva and R. appendiculatus appears to be absent, raising issues regarding vector distribution. Recently, there have been multiple field population genetic studies using variable number tandem repeat (VNTR) sequences and sequencing of antigen genes encoding targets of CD8+ T-cell responses. The VNTR markers generally reveal high levels of diversity. The antigen gene sequences present within the trivalent Muguga cocktail are relatively conserved among cattle transmissible T. parva populations. By contrast, greater genetic diversity is present in antigen genes from T. parva of buffalo origin. There is also evidence from several studies for transmission of components of stocks present within the Muguga cocktail, into field ticks and cattle following induction of a carrier state by immunization. In the short term, this may increase live vaccine effectiveness, through a more homogeneous challenge, but the long-term consequences are unknown.


Subject(s)
Antigens, Protozoan/immunology , Buffaloes/parasitology , Cattle Diseases/prevention & control , Protozoan Vaccines/immunology , Theileria parva/immunology , Theileriasis/prevention & control , Vaccination/veterinary , Africa/epidemiology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Carrier State , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/therapy , Disease Reservoirs/parasitology , Genetic Variation , Genetics, Population , Minisatellite Repeats/genetics , Molecular Epidemiology , Theileria parva/genetics , Theileriasis/epidemiology , Theileriasis/parasitology , Theileriasis/therapy , Ticks/parasitology , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...